If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+48x-3200=0
a = 5; b = 48; c = -3200;
Δ = b2-4ac
Δ = 482-4·5·(-3200)
Δ = 66304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{66304}=\sqrt{256*259}=\sqrt{256}*\sqrt{259}=16\sqrt{259}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-16\sqrt{259}}{2*5}=\frac{-48-16\sqrt{259}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+16\sqrt{259}}{2*5}=\frac{-48+16\sqrt{259}}{10} $
| 32=-5+4(y-2) | | 1/6y-3=-11 | | -6x+2=3x+83 | | M=-(4-m)+2 | | 5/3+3m/4=41/12 | | 8x-4(5-x)=-4x | | 4+4n=-28 | | 25y-9=13y+6 | | 3n+5=10n+10 | | 6x+31=-(-x-6) | | 5(x-2)=x-14 | | 4+3x+6x=13 | | 45=37+v | | 8(4x+8)=-29+x | | 3(6x+6)+1=19+5x | | -4(2x+5)=2(-x-9) | | 19y+1=18y+3 | | 5a-(8+2a)=10 | | -7n-11=2(5+7n) | | 29=-7(6c-8) | | -4(1-5k)=-k-4 | | 11+2x+8=x+19 | | 4(2-b)=-36+7b | | -7+2x+5=x+7 | | -33+2x=3(8+7x) | | 21-7m=-2(-7+7m) | | 15x-2=7x+2 | | 2(1+5b)=7(2b-4 | | 6x-1+9=10x | | -14-7x=-2(x-8) | | 10+7x=-8(1-2x) | | 3x+x=448 |